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Abstract. We consider double spin asymmetries for longitudinally polarized leptons and transversely po-
larized protons in diffractive vector meson and QQ̄ production at high energies within the two-gluon model.
The connection of the two-gluon approach with skewed gluon distributions is discussed. The asymmetry
predicted for meson production is quite small. The AlT asymmetry for QQ̄ production contains two in-
dependent terms which are large and can be used to obtain information on the polarized skewed gluon
distributions in the proton.

1 Introduction

The study of the hadron structure is a fundamental prob-
lem of modern physics. One of the important objects here
is the parton distribution in a nucleon. The cross sec-
tion of inclusive hadron production is expressed in terms
of ordinary parton distributions where partons have the
same momenta. More general structures in a nucleon can
be studied in deeply virtual Compton scattering or in
diffractive hadron leptoproduction. In fact, the kinemat-
ics of these processes requires a non-zero longitudinal mo-
mentum ζp carried by the two-parton system. As a re-
sult, the parton momenta cannot be equal, and such reac-
tions are expressed in terms of skewed parton distributions
(SPD) [1,2]. The factorization of the amplitude of diffrac-
tive hadron production into a hard subprocess and a soft
proton matrix element – SPD – has been shown in [3]. The
diffractive charm QQ̄ production and J/Ψ production are
determined by the gluon SPD Fζ(x), because the charm
component in the proton is small. The processes with light
quarks are predominated at small Bjorken x ≤ 0.1 by the
pomeron exchange which can be associated with a two-
gluon state [4]. Both quark and gluon SPD will contribute
here for x > 0.1.

The sensitivity of diffractive lepto- and photoproduc-
tion to the gluon density in the proton gives an excellent
tool to test these structure functions. Intensive experi-
mental studies of diffractive processes were performed in
DESY (see e.g. [5–8] and references therein). The longi-
tudinal double spin asymmetry in vector meson produc-
tion has been analyzed in [9]. A theoretical investigation
of the diffractive vector meson production was conducted
on the basis of different models in which the sensitivity
of the experimental observables to polarized parton dis-
tributions was studied. Within the two-gluon exchange
model, the typical scale Q̄2 = (Q2 + M2

V )/4 was found
a e-mail: goloskkv@thsun1.jinr.ru

for vector mesons production [10,11]. The cross sections
of light and heavy meson production plotted versus this
variable looks similar [12]. In [13–15] the cross section for
longitudinal and transverse photon polarization was ana-
lyzed. It was shown that a longitudinally polarized pho-
ton gives a predominant contribution to the cross section
for Q2 → ∞. The cross section with transverse photon
polarization is suppressed as a power of Q. An investiga-
tion of the vector meson production within the SPD ap-
proach was performed by many authors (see e.g. [16,17]).
Within the SPS approach, one can study simultaneously
the imaginary and real parts of the diffractive amplitudes.
In [18], the double spin asymmetry for longitudinal lepton
and proton polarization in J/Ψ production was estimated.
The contribution with transversely polarized photons and
a vector meson is important for a spin observable like the
All asymmetry. Unfortunately, for the light meson pro-
duction, this higher twist transition amplitude is not well
defined because of the infrared singularities present [19].

Another possibility to study SPD in the proton is based
on the quark pair leptoproduction. A theoretical analysis
of the diffractive QQ̄ production which can be observed
as two jet events in lepton–proton interaction was carried
out e.g. in [20–23]. It was shown that the cross sections
of diffractive quark–antiquark production are expressed in
terms of gluon distributions as in the case of vector meson
production. However, the scale variable in the structure
function is here determined by the transverse momen-
tum of a produced quark. Spin effects in a diffractively
produced quark–antiquark pair for longitudinally polar-
ized lepton and proton were discussed in [24] where the
diffractive contribution to the g1 structure function was
calculated.

Thus, the diffractive reactions should play a key role in
the study of the gluon structure of the proton at small x.
In the case of polarized particles, the spin-dependent gluon
distributions can be investigated. Previously, spin asym-
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metries for longitudinally polarized particles were mainly
analyzed. In future, this will be an excellent possibility to
study spin effects with a transversely polarized target at
HERMES. Numerous proposals for possible experiments
with this target were discussed in [25]. Such experiments
should shed light on the polarized parton distributions
which are responsible for the transverse spin effects in the
hadron.

In this paper we consider double spin asymmetries for
longitudinally polarized leptons and transversely polarized
protons in diffractive vector meson and QQ̄ production at
high energies. Some preliminary results in this field were
published in [26]. The two-gluon exchange model with the
spin-dependent gg–proton coupling is used. This means
that our results should be applicable for reactions with
heavy quarks which are determined by the gluons ex-
change. For processes with light quarks our predictions
should be valid at small x (e.g. x ≤ 0.1). The cross sec-
tion of hadrons leptoproduction can be decomposed into
leptonic and hadronic tensors and the amplitude of hadron
production through the γ�gg transition to the vector me-
son or QQ̄ states. After describing the kinematics of the
process in Sect. 2, we analyze the structure of the leptonic
and hadronic tensors in Sect. 3. In Sect. 4, we calculate the
polarized cross section of vector meson leptoproduction.
The connection of the two-gluon approach with skewed
gluon distributions is discussed, too. Similar results for
diffractive QQ̄ production are presented in Sect. 5. The
numerical results for the diffractive vector meson and pro-
duction at HERMES and COMPASS energies and our pre-
diction for the AlT asymmetry can be found in Sects. 6 and
7. We finish with concluding remarks in Sect. 8.

2 Kinematics
of diffractive hadron leptoproduction

Let us study the diffractive hadron production in lepton–
proton reactions,

l + p → l + p+H, (1)

at high energies in a lepton–proton system. The hadron
state H in this reaction can contain a vector meson or a
QQ̄ system which can be detected as two final jets. The
reaction (1) can be described in terms of the kinematic
variables which are defined as follows:

q2 = (l − l′)2 = −Q2, t = r2P = (p− p′)2, y =
p · q
l · p ,

x =
Q2

2p · q , xP =
q · (p− p′)

q · p , β =
x

xP
, (2)

where l, l′ and p, p′ are the initial and final lepton and
proton momenta, respectively, Q2 is the photon virtual-
ity, and rP is the momentum carried by the pomeron.
The variable β is used in QQ̄ production. In this case
the effective mass of a produced quark system is equal to
M2

X = (q + rP )2 and can be quite large. The new vari-
able β = x/xP ∼ Q2/(M2

X + Q2) which appears in this

case can vary from 0 to 1. For diffractive vector meson
production, M2

X = M2
V and β ∼ 1 for large Q2. From

the mass-shell equation for the vector meson momentum
K2

V = (q + rP )2 =M2
V , we find that for these reactions

xP ∼ m2
V +Q2 + |t|

sy
, (3)

and this is small at high energies. This variable is not fixed
for QQ̄ production.

We use the light-cone variables that are determined by
a± = a0 ±az. In these variables, the scalar product of two
4-vectors looks like

a · b = 1
2
(a+b− + a−b+) − �a⊥�b⊥,

where �a⊥ and �b⊥ represent the transverse parts of the
momenta. In the calculation, the center of mass system is
used where the momenta of the initial lepton and proton
are going along the z axis and have the form

l =
(
p+,

µ2

p+
,�0
)
, p =

(
m2

p+
, p+,�0

)
. (4)

Here µ and m are the lepton and proton mass. The energy
of the lepton–proton system then reads s ∼ p2

+.
The momenta are carried by the photon and the pom-

eron and can be written as follows:

q =
(
yp+,−Q2

p+
, �q⊥

)
, |q⊥| =

√
Q2(1 − y);

rP =
(

− |t|
p+

, xP p+, �r⊥

)
, |r⊥| =

√
|t|(1 − xP ). (5)

We can determine the spin vectors with positive helicity
of the lepton and the proton by

sl =
1
µ

(
p+,−µ2

p+
,�0
)
, s2l = −1, sl · l = 0;

sp =
1
m

(
m2

p+
,−p+,�0

)
, s2p = −1, sp · p = 0. (6)

The polarization vector for a transversely polarized target
can be written in the form

s⊥
p = (0, 0, �s⊥), �s2⊥ = 1. (7)

3 Structure of leptonic and hadronic tensors

3.1 Leptonic tensor

The structure of the leptonic tensor is quite simple [27],
because the lepton is a pointlike object:

Lµν(sl) =
∑

spin sf

ū(l′, sf )γµu(l, sl)ū(l, sl)γνu(l′, sf )

= Tr
[
(/l + µ)

1 + γ5/sl
2

γν(/l′ + µ)γµ
]
. (8)
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Fig. 1. Graphs which give the leading Log contribution to the
ggp vertex in α2 order

Here l and l′ are the initial and final lepton momenta, and
sl is a spin vector of the initial lepton determined in (6).

The sum and difference of the cross sections with par-
allel and antiparallel longitudinal polarization of a proton
and a lepton are expressed in terms of the spin-averaged
and spin-dependent hadron and lepton tensors. The latter
is determined by the relation

Lµν(±) =
1
2

(
Lµν

(
+
1
2

)
± Lµν

(
−1
2

))
, (9)

where Lµ;ν (±1/2) are the tensors with helicity of the ini-
tial lepton equal to ±1/2. The tensors (9) look like

Lµν(+) = 2(gµν l · q + 2lµlν − lµqν − lνqµ),

Lµν(−) = 2iµεµνδρqδ(sl)ρ. (10)

3.2 Proton–two-gluon coupling and hadron tensor

The QQ̄ system which appears in the final state or passes
into the vector meson in reaction (1) can be produced
in two ways. The first one is the photon interaction with
the QQ̄ state from the proton. This contribution can be
connected with the quark distribution in a nucleon. The
other contribution is determined by the photon–gluon fu-
sion which produces the QQ̄ system. The quark pair must
be in a color singlet state to produce the vector meson.
This means that the gluon state should be colorless too
and contains two gluons at least. We are working in the
low x region where the gluon contribution predominates.
It is associated with the pomeron that describes diffrac-
tive processes at high energies. In QCD-inspired models,
the pomeron is usually represented as a two-gluon object.

Properties of the gluon structure functions are deter-
mined by the non-perturbative effects inside the proton.
We shall analyze only the matrix structure of two-gluon
coupling with the proton within the quark–diquark model
[28] where the proton is composed of a quark and a di-
quark. Composite scalar and vector diquarks provide an
effective description of non-perturbative effects in the
gluon–proton interaction. The vector diquark produces
spin-flip effects in the proton coupling with the gluon.

It has been shown in [29] that the leading contribu-
tion like αs [αs ln (1/x)]

n to the pomeron is determined
by the gluon ladder graphs. In the [αs]

2 order we have
in the model the two ladder graphs shown in Fig. 1 with
α2

s ln (1/x) behavior. We include in the gluons coupling
with the proton the gluon ladder, except for two upper
t-channel gluons in Fig. 1. This coupling is shown in the

graphs of Fig. 1 by the blob. In what follows, we shall
calculate the imaginary part of the pomeron contribu-
tion to the scattering amplitude which dominates in the
high-energy region. This contribution is equivalent to the
t-channel cut in the gluon-loop graphs. In the diquark
model, the following structures in the coupling appear:

V αβ
pgg(p, t, xP , l⊥) = B(t, xP , l⊥)(γαpβ + γβpα)

+
iK(t, xP , l⊥)

2m
(pασβγrγ + pβσαγrγ)

+ iD(t, xP , l⊥)εαβδρpδγργ5 + · · · (11)

Herem is the proton mass. In the matrix structure (11) we
wrote only the terms with the maximal powers of a large
proton momentum p. The structure functions in (11) are
dependent on the transverse part of the gluon momentum
l⊥. The first two terms of the vertex (11) are symmet-
ric in the gluon indices α, β. The structure proportional
to B(t, · · ·) determines the spin-non-flip contribution. The
term ∝ K(t, · · ·) leads to the transverse spin-flip at the
vertex. The asymmetric structure in (11) is proportional
to Dγργ5 and can be associated with ∆G. It should give a
visible contribution to the double spin longitudinal asym-
metry All. We do not consider this structure here and
concentrate on the transverse effects in the proton. In a
QCD-based diquark model of the proton, the first two
terms in (11) were estimated in the proton–proton scat-
tering amplitude for moderate momentum transfer [30].
At small momentum transfer, such a model calculation is
not possible, and we do not know explicitly the functions
B, K, · · · in (11). Note that a coupling similar to (11) was
found in high-energy quark–quark scattering when large-
distance effects were considered in the gluon loops [31].

In what follows, we analyze the γ∗gg → QQ̄ transition
amplitude. The typical momentum of quarks in this case is
proportional to the photon momentum q. In the Feynman
gauge, we can decompose the gµν tensors from t-channel
gluons into longitudinal and transverse parts [29]:

gαα
′
= gαα

′
l + gαα

′
⊥ with gαα

′
l ∼ qαpα

′

(pq)
. (12)

The product of the gαα
′

l tensors by the two-gluon coupling
of the proton can be written in the form

gα
′α

l gβ
′β

l V αβ
pgg(p, t, xP , l⊥) (13)

∝ pα
′
pβ

′
[

/q

(pq)
B(t, xP , l⊥) +

iK(t, xP , l⊥)
2m(pq)

σβγqβrγ

]
.

The structure proportional to D is asymmetric in the
gluon indices. It will contribute only in the case when one
of the gluon tensors in (13) has a transverse component.
It can be seen that the structure in square brackets in (13)
is related directly to the definitions of the skewed gluon
distribution (see e.g. [1]). So, one can conclude that after
integration over the gluon transverse momentum l⊥, we
should have the connections:

Fg
ζ (ζ, t) ∝

∫
d2l⊥B(t, ζ = xP , l⊥)φ(l⊥, · · ·),
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Kg
ζ(ζ, t) ∝

∫
d2l⊥K(t, ζ = xP , l⊥)φ(l⊥, · · ·), (14)

and B and K are non-integrated gluon distribution func-
tions which describe spin-averaged and transverse spin ef-
fects in the proton. The universal function φ in (14) will be
found later. In future calculations, we use the gαα

′
tensor

without its decomposition into longitudinal and transverse
parts.

The hadronic tensor is given by

Wαα′;ββ′
(sp) =

∑
spin sf

ū(p′, sf )V αα′
pgg (p, t, xP , l) (15)

× u(p, sp)ū(p, sp)V ββ′+
pgg (p, t, xP , l′)u(p′, sf ),

and is determined by a trace similar to (8). The spin-
averaged and spin-dependent hadron tensors are defined
by

Wαα′;ββ′
(±) =

1
2
(Wαα′;ββ′

(+sp)±Wαα′;ββ′
(−sp)). (16)

This form is written for an arbitrary spin vector sp and
can be used as well for transversely as for longitudinally
polarized target. In the last case, the contribution of the
D structure should be considered. For the leading term of
the spin-averaged structure W (+) for the ansatz (11) we
find

Wαα′;ββ′
(+) = 16pαpα

′
pβpβ

′
(

|B|2 + |t|
m2 |K|2

)
. (17)

Note that we omit for simplicity, here and in what fol-
lows, the arguments of the B and K functions unless
these are necessary. However, we should remember that
the amplitudes B and K depend on l, otherwise the com-
plex conjugate quantities B� and K� are functions of l′.
The obtained equation for the spin-averaged tensor coin-
cides in form with the cross section of the proton off the
spinless particle (e.g. a meson). In fact, the meson–proton
helicity-non-flip and helicity-flip amplitudes can be writ-
ten in terms of the invariant functions B̃ and K̃ which
describe spin-non-flip and spin-flip effects:

F++(s, t) = is[B̃(t)]f(t); F+−(s, t) = is

√|t|
m

K̃(t)f(t),

(18)
where f(t) is determined by the pomeron coupling with
the meson. The functions B̃ and K̃ are defined by integrals
like (14). The cross section is written in the form

dσ
dt

∼
[
|B̃(t)|2 + |t|

m2 |K̃(t)|2
]
f(t)2. (19)

The term proportional to B̃ represents the standard
pomeron coupling that leads to the non-flip amplitude.
The K̃ function is the spin-dependent part of the pomeron
coupling which produces in our case the spin-flip effects
non-vanishing at high energies. The models [30,32] predict
a value of the single spin transverse asymmetry of about

10% for |t| ∼ 3GeV2 which is of the same order of mag-
nitude as that observed experimentally [33]. It has been
found in [30,32] that the ratio |K̃|/|B̃| ∼ 0.1 and that it
has a weak energy dependence. The weak energy depen-
dence of spin asymmetries in exclusive reactions is not in
contradiction with experiment [32,34].

The spin-dependent part of the hadron tensor can be
written as

Wαα′;ββ′
(−) = Sαα

′;ββ′
0 + Sαα

′;ββ′
r +Aαα′;ββ′

t . (20)

The functions S are symmetric in the α, α′ and β, β′ in-
dices; we have

Sαα
′;ββ′

0 = 8i
BK∗ −B∗K

m
pβpβ

′
Γαα′

(21)

and

Sαα
′;ββ′

r = 2i
B∗K
m

(
pα(rP )α

′
+ pα

′
(rP )α

)
Γ ββ′

− 2i
BK∗

m

(
pβ(rP )β

′
+ pβ

′
(rP )β

)
Γαα′

. (22)

Here

Γαα′
= pαεα

′γδρpγ(rP )δ(sp)ρ + pα
′
εαγδρpγ(rP )δ(sp)ρ.

(23)
The function At is asymmetric in the indices

Aαα′;ββ′
t = 2i|t|B

∗K
m

[
pαpβεα

′β′δρpδ(sp)ρ

+ pαpβ
′
εα

′βδρpδ(sp)ρ + pα
′
pβεαβ

′δρpδ(sp)ρ

+ pα
′
pβ

′
εαβδρpδ(sp)ρ

]
. (24)

Note that these forms are general and can be used for dif-
ferent polarization vectors of the proton. For longitudinal
proton polarization, the structure D should be considered
in addition.

4 Diffractive vector meson leptoproduction

Now we proceed to analyze the amplitude of vector meson
production through the photon–two-gluon fusion. In what
follows, we will mainly consider the J/Ψ meson produc-
tion. This meson can be considered as an S-wave system
of heavy cc̄ quarks [35]. The J/Ψ -wave function in this
case has the form

ΨV = g(/k +mq)γµ (25)

where k is the momentum of a quark, and mq is its mass.
In the non-relativistic approximation, both quarks have
momenta k equal to half of the vector meson momentum
KJ , and the mass of the c quark is equal to mJ/2. The
transverse quark motion is not considered. This means
that the vector meson distribution amplitude is approxi-
mated by the simple form δ(τ − 1/2)δ(k2

t ). The constant
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Fig. 2a,b. Two-gluon contribution to diffractive vector meson
production

g in the wave function can be expressed through the e+e−
decay width of the J/Ψ meson [10]:

g2 =
3Γ J

e+e−mJ

64πα2 . (26)

The leading twist wave function (25) produces both ampli-
tudes with longitudinal and transverse vector meson po-
larization because of non-zero mass mq. For the light me-
son production mq = 0, and one must consider the higher
twist effects to calculate the amplitude with transverse
vector meson polarization (see e.g. [18]).

It is known (see e.g. [10,11]) that the leading terms
of the amplitude of diffractive vector meson production is
mainly imaginary. We shall consider here only the imagi-
nary parts of the amplitudes. In this case, only the graphs
of Fig. 2 contribute. The gluons are coupled with single
and different quarks in the cc̄ loop (see Fig. 2a,b). To cal-
culate the imaginary part of the amplitude, we should
consider the δ function contribution in the s-channel prop-
agators (k + l and p′ − l lines for Fig. 2a). With the help
of δ functions the integration over l∫

d4l =
1
2

∫
dl+dl−dl⊥ (27)

can be carried out over the l+ and l− variables. One can
find that the l± components of the vector l both are small:
l+ ∼ l− ∝ 1/p+. This results in the transverse character
of the gluon momentum l2 � −l2⊥. The same is true for
integration over l in the non-planar graph of Fig. 2b. For
the arguments in the off mass-shell quark propagators of
Fig. 2a,b, we find

r2 −m2
q = −M2

J +Q2 + |t|
2

,

w2 −m2
q = −2

(
l2⊥ +�l⊥�r⊥ +

M2
J +Q2 + |t|

4

)
. (28)

Thus, these quark lines are far from the mass shell for
heavy vector meson production even for small Q2 [10].

In what follows we calculate the polarized cross sec-
tion of vector meson production. The cross section can
be represented as the square of the γ�gg → V amplitude
convoluted with the lepton and hadron polarized tensors.
Some details of the calculations conducted for longitudinal
target polarization can be found in [36].

We consider both longitudinal and transverse polariza-
tion of the vector meson which can be carried out directly
for J/Ψ production for the wave function (25). For the
sum over the polarization of the J/Ψ polarized vectors eJ
we have ∑

SpinJ

eρJ(e
σ
J)

+ = −gρσ +
Kρ

JK
σ
J

m2
J

. (29)

The spin-averaged and spin-dependent cross sections
of vector meson leptoproduction with longitudinal polar-
ization of a lepton and transverse polarization of the pro-
ton are determined by the relation

dσ(±) =
1
2
(dσ(→⇓) ± dσ(→⇑)) . (30)

The cross section dσ(±) can be written in the form

dσ±

dQ2dydt
=

|T±|2
32(2π)3Q4s2y

. (31)

For the spin-averaged amplitude squared we find

|T+|2 =
s2N

4Q̄4

(
(1 + (1 − y)2)m2

V + 2(1 − y)Q2)
×
[
|B̃|2 + |K̃|2 |t|

m2

]
. (32)

Here Q̄2 = (m2
V +Q2 + |t|)/4, and N is the normalization

factor

N =
Γ J
e+e−MJα

4
s

27π2 . (33)

The term proportional to (1+(1−y)2)m2
V in (32) rep-

resents the contribution of the virtual photon with trans-
verse polarization. The 2(1−y)Q2 term describes the effect
of longitudinal photons. This contribution is predominant
for high Q2. The B̃ and K̃ functions are expressed through
the integral over the transverse momentum of the gluon.
The function B̃ is determined by

B̃ = Q̄2
∫

d2l⊥(l2⊥ +�l⊥�r⊥)B(t, l2⊥, xP , · · ·)
(l2⊥ + λ2)((�l⊥ + �∆)2 + λ2)[l2⊥ +�l⊥�r⊥ + Q̄2]

∼
∫ l2⊥<Q̄2

0

d2l⊥(l2⊥ +�l⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)
B(t, l2⊥, xP , · · ·).

(34)

We find that the cross sections depend on the variable
Q̄2 which is a modification of the scale variable proposed
in [10,11] for the case of large momentum transfer. The
term (l2⊥+�l⊥�r⊥) appears in the numerator of (34) because
of the cancellation between the planar and non-planar
graphs where the gluons are coupled with single and dif-
ferent quarks (Fig. 2). The K̃ function is determined by a
similar integral. The integral (34) can be connected with
the gluon SPD:

Fg
xP

(xP , t, Q̄2)

∼
∫ l2⊥<Q̄2

0

d2l⊥(l2⊥ +�l⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)
B(t, l2⊥, xP , · · ·)

= B̃. (35)
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Fig. 3. Box graphs contributions to the cross section of diffrac-
tive QQ̄ production

Note that if one considers the effects of the transverse
quark motion in the vector meson wave function, the scale
variable in SPD will be changed to Q̄2 → Q̄2 + k2

⊥ [13,
37]. Thus, the B(l2⊥, xP , · · ·) function is a non-integrated
spin-averaged gluon distribution. The K̃ function is pro-
portional to the Kg

xP
(xP , t) distribution. The function φ

in (14) has the form

φ(l⊥, · · ·) = (l2⊥ +�l⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)
. (36)

The spin-dependent amplitude squared looks like

|T−|2 =
�Q�S⊥
4m

s|t|N
4Q̄4

(
Q2 +m2

V + |t|) B̃K̃∗ + B̃∗K̃
2

. (37)

We shall use the spin-dependent cross sections obtained
here for the numerical analysis of polarized vector meson
production in Sect. 6.

5 Diffractive QQ̄ photoproduction

Let us study now the diffractive QQ̄ production in the
lepton–proton reaction. This process is determined by
graphs similar as shown in Fig. 2. The change is in the
photon–two-gluon fusion amplitude where we do not
project the QQ̄ state onto the vector meson. The quark–
antiquark contribution, instead of t-channel gluons, is pos-
sible for light quark production. To suppress this contri-
bution of the quark structure function which should be
essential at large x, we investigate quark production at
small x ≤ 0.1. In this kinematical region the gluon contri-
bution is predominant.

As in the case of vector meson production, we cal-
culate the spin-averaged and spin-dependent cross sec-
tion (31) of diffractive QQ̄ leptoproduction. To calculate
these cross sections, we should integrate the correspond-
ing amplitudes squared over the QQ̄ phase space dNQQ̄ =
Πfd3pf/((2π)32Ef ) with the delta function that reflects
the momentum conservation. It can easily be seen that

d3p1

2E1

d3p2

2E2
δ4(q+rP −p1−p2) = d4p1δ(p2

1−m2
q)δ(p

2
2−m2

q),

(38)
and the calculation of the γgg → QQ̄ cross section is
equivalent to computation of the imaginary part of the
quark-loop diagram shown in Fig. 3. The amplitude of
photon–two-gluon fusion shown by blobs in Fig. 3 repre-
sents a sum of graphs in Fig. 4. The diagrams of Fig. 4

k'k= +

p1

p2

Fig. 4. The amplitude of photon–two-gluon fusion

are similar to the planar and non-planar gluon graphs of
Fig. 2. As a result, the gluon contribution to the cross sec-
tion should be similar to that obtained in (34).

The final quark momenta p1, p2 and the momentum of
the off mass-shell quark k (k′) can be determined with the
help of delta functions in (38). There are two integration
regions for the k vectors. For Region I, we find that p1 ∼ q
and p2 ∼ rP ,

p1 ∼
(
yp+ − |t|

p+
− m2

q + (�r⊥ + �k⊥)2

p+xP
,

m2
q + (�q⊥ − �k⊥)2

p+y
, (�q⊥ − �k⊥)

)
,

p2 ∼
(
m2

q + (�r⊥ + �k⊥)2

p+xP
, (39)

xP p+ − Q2

p+
− m2

q + (�q⊥ − �k⊥)2

p+y
, (�r⊥ + �k⊥)

)
,

and the vector k is mainly transverse: k2 ∼ −k2
⊥. The t-

channel gluon contribution is predominated if both quark–
proton energies are large. We find that

(p1 + p)2 ∼ yp2
+, (p2 + p)2 ∼ m2

q + k2
⊥

xP
. (40)

Thus, xP should be quite small (xP ≤ 0.1). At the same
time k2

⊥ should not be small (we shall use k2
⊥ > 1GeV2). A

non-small value for k2 produces the large quark virtuality
for the graphs of Fig. 4.

For Region II, the quark momentum interchanged
places, p1 ↔ p2. In this case, the vector k has a large lon-
gitudinal component, and k2 ∼ −xP p2

+. One can suppose
that such contributions should be suppressed. However, in
this case, we find a similar large variable from the trace
in the numerator of the diagram that compensates p2

+ in
the denominator. A similar compensation between the nu-
merator and denominator takes place for the non-planar
quark-loop diagrams (the second graph in Fig. 3). In this
case, we have a large variable only in one propagator. The
calculation of the γgg → QQ̄ process is more complicated
than the vector meson case. We must consider here eight
graphs with two regions for the quark momenta. This gen-
erates a complete set of graphs of QQ̄ production.

The integration over the quark momenta k± in the
loop can be carried out with the help of delta functions in
(38):
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d4kδ(p2
1 −m2

q)δ(p
2
2 −m2

q) ∼ d2k⊥

M2
X

√
1 − 4(k2

⊥ +m2
q)/M2

X

.

(41)
As a result, the spin-averaged and spin-dependent cross

section can be written in the form

d5σ(±)
dQ2dydxpdtdk2

⊥
=

(
(2 − 2y + y2)

(2 − y)

)

× C(xP , Q2)N(±)√
1 − 4(k2

⊥ +m2
q)/M2

X

. (42)

Here C(xP , Q2) is a normalization function which is com-
mon for the spin-averaged and spin-dependent cross sec-
tion; N(±) is determined by a sum of the graphs in Figs. 3
and 4 integrated over the gluon momenta l and l′:

N(±) =
∫

d2l⊥d2l′⊥(l
2
⊥ +�l⊥�r⊥) ((l′⊥)

2 +�l′⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)

× D±(t, Q2, l⊥, l′⊥, · · ·)
(l′2⊥ + λ2)((�l′⊥ + �r⊥)2 + λ2)

. (43)

The D± function here is a sum of traces over the quark
loops of the graphs in Figs. 3 and 4 convoluted with the
spin-averaged and spin-dependent tensors. The calcula-
tion shows a considerable cancellation between the planar
and non-planar contribution of the graphs in Fig. 4. As a
result, in the numerator of (43) we find the terms propor-
tional to the gluon momenta l⊥ and l′⊥ as in the case of
vector meson production (34).

For simplicity we write the analytic forms of the graph
contribution to the cross sections in the limit β → 0. The
numerical calculation will be fulfiled for arbitrary β. The
contribution of the sum of the graphs of Figs. 3 and 4 to
the D+ function for Region I can be written in the form

D+
I =

Q2
(|B|2 + |t|/m2|K|2) ((k⊥ + r⊥)2 +m2

q

)
(
k2

⊥ +m2
q

) (
(k⊥ − l⊥)2 +m2

q

) (
(k⊥ − l′⊥)2 +m2

q

) .
(44)

This function contains a product of the off mass-shell
quark propagators in the graphs of Fig. 3 and 4. We see
that the quark virtuality here is quite different as com-
pared to the vector meson case. We have no terms pro-
portional to Q2 as in (28).

This will change the scale in the corresponding gluon
structure functions. In fact, the denominators in (44) de-
termine the effective integration region over l and l′ in
(33). We can approximately rewrite the contribution of
Dp(+) to N(+)

Np(+) ∼
(
|B̃|2 + |t|/m2|K̃|2

) (
(k⊥ + r⊥)2 +m2

q

)
(
k2

⊥ +m2
q

)3 , (45)

with

B̃ ∼
∫ l2⊥<k2

0

0

d2l⊥(l2⊥ +�l⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)
B(t, l2⊥, xP , · · ·)

= Fg
xP

(xP , t, k2
0) (46)
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Fig. 5. The ratio of cross sections for Regions II and I at
s1/2 = 20GeV for xP = 0.1, y = 0.5, |t| = 0.3GeV2: the solid
line is for k2 = 1GeV2, the dashed line for k2 = 3GeV2, the
dotted line for k2 = 5GeV2

and

K̃ ∼
∫ l2⊥<k2

0

0

d2l⊥(l2⊥ +�l⊥�r⊥)

(l2⊥ + λ2)((�l⊥ + �r⊥)2 + λ2)
K(t, l2⊥, xP , · · ·)

= Kg
xP

(xP , t, k2
0), (47)

with k2
0 ∼ k2

⊥ +m2
q. For non-zero β this scale is changed

to k2
0 ∼ (k2

⊥ +m2
q)/(1 − β) and coincides with that found

in [21,22]. As we expected, the gluon structure functions
are determined by the same integrals as in (35) but on a
different scale.

For Region II, only the first planar graph of Fig. 3 con-
tributes. As a result of the compensation of the gluon con-
tributions shown in Fig. 4, the form (43) is valid here too.
The graphs here have lines with large quark virtuality.
Propagators of these lines become pointlike. As a result,
the contribution to the cross section for Region II has dif-
ferent Q2 and k2 dependences with respect to Region I.
We find

D+
II =

2(1 − y)
(|B|2 + |t|/m2|K|2)

(2 − 2y + y2)
(
(k⊥ + r⊥)2 +m2

q

) . (48)

The ratio of the cross sections for Regions I and II is shown
in Fig. 5. The ratio is growing with k2. We find that the
integration region II is essential at small Q2. It can be
seen that the contribution of the D functions (44) and
(48) to the cross section (42) is proportional to D+

I ∝
(2 − 2y + y2), D+

II ∝ 2(1 − y). They represent, as in (32),
the contributions with transverse and longitudinal photon
polarization, respectively [21].

The contribution of all graphs to the function N(+)
can be written as

N(+) =
(
|B̃|2 + |t|/m2|K̃|2

)
Π(+)(t, k2

⊥, Q
2). (49)

The function Π(+) for non-zero β is complicated in form
and will be calculated numerically.
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The same procedure is used in calculations of the spin-
dependent cross sections. The spin-dependent leptonic and
hadronic tensors (10) and (20) are used in this case. The
spin-dependent part of the hadronic tensor (20) is much
more complicated than the one of (17). This results in
tangled analytic expressions of the spin-dependent cross
sections. We shall discuss here only the general structure
of this observable. In addition to the term observed in
(37) and proportional to the scalar product �Q�S⊥, the new
term ∝ �k⊥�S⊥ appears. As a result, we find the following
representation of the function N(−):

N(−) =

√
|t|
m2

(
B̃K̃∗ + B̃∗K̃

)
(50)

×
[
( �Q�S⊥)
m

Π
(−)
Q (t, k2

⊥, Q
2) +

(�k⊥�S⊥)
m

Π
(−)
k (t, k2

⊥, Q
2)

]
.

The second term in (50) cannot be found in the vector
meson production, because we should integrate there the
amplitudes over d2k⊥. The functions Π(−)

Q(k) will be calcu-
lated numerically like the function Π(+).

6 Numerical results
for vector meson leptoproduction

We shall calculate the polarized cross section (30) of diff-
ractive J/Ψ production determined by the amplitudes (32)
and (37). The spin-averaged cross section of the vector me-
son production at a small momentum transfer is propor-
tional to the |B̃|2 function (32) which is connected with
the skewed gluon distribution (35). This result is in accor-
dance with the imaginary part of the amplitude found on
the basis of the SPD approach [1]. We use here a simple
parameterization of the SPD, a product of the form factor
and the ordinary gluon distribution:

B̃(t, xP , Q̄2) = FB(t)
(
xPG(xP , Q̄2)

)
, (51)

where for simplicity the form factor FB(t) is chosen as the
electromagnetic form factor of the proton. Such a sim-
ple choice can be justified by the fact that the pomeron–
proton vertex might be similar to the photon–proton cou-
pling [38,39]

FB(t) ∼ F em
p (t) =

(4m2
p + 2.8|t|)

(4m2
p + |t|)(1 + |t|/0.7GeV2)2

. (52)

To perform simple estimations, we shall use our re-
sults from [30,32] where it was found that the ratio of
spin asymmetries in exclusive reactions at small momen-
tum transfer may have a weak energy dependence. The
corresponding asymmetries are proportional to the ratio
|K̃|/|B̃| at small x ∼ 1/s. We shall suppose that this
is true for the ratio of spin-dependent and spin-averaged
densities in our case too and

|K̃|
|B̃| ∼ 0.1. (53)
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Fig. 6. The differential cross section of J/Ψ production at
HERA energy: the solid line is for |K̃|/|B̃| = 0, the dot-dashed
line for |K̃|/|B̃| = 0.1. Data are from [6]

We shall use this value in our estimation of the spin asym-
metries of hadron leptoproduction at small x.

The energy dependence of the cross sections is deter-
mined by the pomeron contribution to the gluon distribu-
tion function at small x,

(
xPG(xP , Q̄2)

) ∼ const

x
αp(t)−1
P

∼
(

sy

m2
J +Q2 + |t|

)(αp(t)−1)

.

(54)
Here αp(t) is a pomeron trajectory which is chosen in the
form

αp(t) = 1 + ε+ α′t. (55)

with ε = 0.15 and α′ = 0. These values are in accordance
with the fit of diffractive J/Ψ production by ZEUS [40]

The typical scale of the reaction is determined by Q̄2 =
(m2

J + Q2 + |t|)/4. For Q2 and |t| not large, the value of
Q̄2 is about 2.5–3.0GeV2. In this region, we can work
with fixed αs ∼ 0.3. The effective gluon mass in (34) is
chosen to be equal to 0.3GeV2. The cross section weakly
depends on this parameter. The value of Γ J

e+e− = 5.26 keV
is used. The predicted cross sections are shown in Fig. 6.
Our results reproduce the experimental data quite well.

The AlT asymmetry for vector meson production is
determined by the ratio of cross sections determined in
(37) and (32):

AlT =
σ(−)
σ(+)

∼
�Q�S⊥
4m

yxP |t|
(1 + (1 − y)2)m2

V + 2(1 − y)Q2

× B̃K̃

|B̃|2 + |K̃|2|t|/m2
. (56)

For small momentum transfer, this asymmetry can be ap-
proximated by

AlT ∼ Cg

Kg
ζ(ζ)

Fg
ζ (ζ)

with ζ = xP . (57)

Simple estimations show that the coefficient Cg(J/Ψ) at a
HERMES energy for y = 0.5, |t| = 1GeV2, Q2 = 5GeV2
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Fig. 7. The AlT asymmetry for vector meson production at
s1/2 = 7GeV (y = 0.5, |t| = 1GeV2): the solid line is for J/Ψ
production, the dotted line for ρ production

is quite small, about 0.007. To get the expected values for
the coefficients (57) for light vector mesons, we use the
same equation, (56). The simple model used for the wave
function predicts a weak mass dependence of the gluon
contribution to the asymmetry. For the same kinematical
variables, C(φ) ∼ C(ρ) ∼ 0.008. However, these results
are obtained for the non-relativistic meson wave function
of the form δ(τ − 1/2)δ(k2

t ), which is not a good approxi-
mation for light meson production. To get suitable predic-
tions for ρ, φ meson production, it is important to study
a more realistic wave function and take into considera-
tion the transverse quark degrees of freedom. Moreover,
for ρ, φ meson production, the contribution of the quark
SPD should be considered in the HERMES energy range.

The asymmetry predicted for J/Ψ production at HER-
MES energies is shown in Fig. 7 (K̃/B̃ = 0.1) for the case
when the transverse part of the photon momentum is par-
allel to the target polarization S⊥. Simple estimations on
the basis of (57) for ρ meson production are shown there
too. At the HERA energies, the asymmetry will be ex-
tremely small.

7 Predictions for QQ̄ leptoproduction

We shall discuss here our prediction for polarized diffrac-
tive QQ̄ production. We do not consider the cross section
but only the asymmetry AlT = σ(−)/σ(+). In estimations
we shall use the same parameterizations of SPD as in (51)
with the functions determined in (52). As in the case of
vector meson production, the asymmetry is approximately
proportional to the ratio of polarized and spin-averaged
gluon distribution functions,

AQQ̄
lT ∼ CQQ̄

Kg
ζ(ζ)

Fg
ζ (ζ)

with ζ = xP . (58)

As previously, in our estimations we use the value |K̃|/
|B̃| ∼ 0.1.
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Fig. 8. The Ak
lT asymmetry in diffractive light QQ̄ production

at s1/2 = 20GeV for xP = 0.1, y = 0.5, |t| = 0.3GeV2: the dot-
ted line for Q2 = 0.5GeV2, the solid line is for Q2 = 1GeV2,
the dot-dashed line for Q2 = 5GeV2, the dashed line for
Q2 = 10GeV2

The spin-dependent contribution has two terms pro-
portional to the scalar products �k⊥�S⊥ and �Q�S⊥ (50). We
shall study these contributions to the asymmetry sepa-
rately. The first term will be analyzed for the case when
the transverse jet momentum �k⊥ is parallel to the target
polarization �S⊥. The asymmetry is maximal in this case.
We would like to emphasize here that to observe this con-
tribution to the asymmetry, it is necessary to distinguish
experimentally between quark and antiquark jets. This
can be realized presumably by the charge of the leading
particles in the jet which should be connected in charge
with the quark produced in photon–gluon fusion. This is
an indispensable condition in the experimental study of
that asymmetry caused by the fact that the transverse
momentum of a quark and an antiquark produced in the
process are opposite in sign. If we do not separate events
with �k⊥ for the quark jet e.g., the resulting asymmetry
will be zero.

The spin-dependent cross section vanishes for Q2 → 0,
while the spin-averaged cross section is constant in this
limit. As a result, the asymmetry can be estimated as
AlT ∝ Q2/(Q2 + Q2

0) with Q2
0 ∼ 1GeV2. The Q2 de-

pendence of the asymmetry for light quark production at
energy s1/2 = 20GeV is shown in Fig. 8. The predicted
asymmetry for heavy cc̄ production is approximately of
the same order of magnitude (see Fig. 9).

At the energy s1/2 = 7GeV (HERMES) it is not so
easy to study the perturbative region for QQ̄ production.
In fact, k2

⊥ should be large enough to have a large scale
k2
0 in the process (47). Otherwise, from (41), we have

the restriction that k2 ≤ M2
X/4. In this energy range

for quite large M2
X ∼ (8–10)GeV2 ∼ M2

J/Ψ we find that
(k2

⊥)max ∼ 2GeV2. This means that we can work only in a
very limited region of k2. The expected AlT asymmetry for
light quark production at HERMES is shown in Fig. 10.
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Fig. 9. The Ak
lT asymmetry in diffractive heavy QQ̄ produc-

tion at s1/2 = 20GeV for xP = 0.1, y = 0.5, |t| = 0.3GeV2:
the dotted line is for Q2 = 0.5GeV2, the solid line for Q2 =
1GeV2, the dot-dashed line for Q2 = 5GeV2, the dashed line
for Q2 = 10GeV2
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Fig. 10. The Ak
lT asymmetry in diffractive light QQ̄ produc-

tion for Q2 = 5GeV2, xP = 0.1, y = 0.5, |t| = 0.3GeV2 at
s1/2 = 7GeV

We find that for k2
⊥ = 1.3GeV2, Q2 = 5GeV2, xP = 0.1,

y = 0.5, and |t| = 0.3GeV2, the coefficient CQQ̄
k in (58) is

quite large, about 1.5 at the HERMES energy. This shows
that there is a possibility to study the polarized gluon dis-
tribution Kg

ζ(x) in the HERMES experiment.
The contribution to the asymmetry ∝ �Q�S⊥ is sim-

pler to study experimentally. Moreover, this term is con-
nected directly with the diffractive contribution with the
A⊥ asymmetry [27]. We shall analyze this term for the
case when the transverse jet momentum �Q⊥ is parallel to
the target polarization �S⊥ (a maximal contribution to the
asymmetry). The predicted AQ

lT asymmetry in diffractive
light QQ̄ production at s1/2 = 20GeV is shown in Fig. 11.
This asymmetry is not small for Q2 ∼ (0.5–1)GeV2. In
contrast to the Ak

lT term, the AQ
lT asymmetry has a strong
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Fig. 11. AQ
lT asymmetry in diffractive light QQ̄ production at

s1/2 = 20GeV for xP = 0.1, y = 0.5, |t| = 0.3GeV2: the dotted
line is for Q2 = 0.5GeV2, the solid line for Q2 = 1GeV2, the
dot-dashed line for Q2 = 5GeV2, the dashed line for Q2 =
10GeV2

1 2 3 4 5

-10,0

-5,0

0,0
A

sy
m

m
et

ry
 (

%
)

k
t

2 (GeV)2

Fig. 12. The AQ
lT asymmetry in diffractive heavy QQ̄ produc-

tion at s1/2 = 20GeV for xP = 0.1, y = 0.5, |t| = 0.3GeV2:
the dotted line is for Q2 = 0.5GeV2, the solid line for Q2 =
1GeV2, the dot-dashed line for Q2 = 5GeV2, the dashed line
for Q2 = 10GeV2

mass dependence. For heavy quark production, this asym-
metry becomes negative; see Fig. 12.

It is interesting to look for what we expect to observe
for light quark production at low energy, s1/2 = 7GeV.
The predicted asymmetry for different momentum trans-
fers is shown in Fig. 13. Note that in fixed-target experi-
ments, it is usually difficult to detect the final hadron and
determine the momentum transfer. In this case, it will be
good to have predictions for the asymmetry integrated
over the momentum transfer

ĀQ
lT =

∫ tmax

tmin
σ(−)dt∫ tmax

tmin
σ(+)dt

. (59)
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Fig. 13. The AQ
lT asymmetry in diffractive light QQ̄ produc-

tion at s1/2 = 7GeV for Q2 = 5GeV2, xP = 0.1, y = 0.5:
the dotted line is for |t| = 0.1GeV2, the dot-dashed line for
|t| = 0.3GeV2, the dashed line for |t| = 0.5GeV2, the solid
line is for integration over the |t| asymmetry

We integrate cross sections from tmin ∼ (xPm)2 ∼ 0 up to
tmax = 4GeV2. The predicted integrated asymmetry (see
Fig. 13) is not small; about 3%.

8 Conclusion

In the present paper, diffractive hadron leptoproduction
for a longitudinally polarized lepton and a transversely po-
larized proton at high energies has been studied within the
two-gluon exchange model. The polarized cross sections of
diffractive hadron production are determined in terms of
the leptonic and hadronic tensors and the squared ampli-
tude of hadron production through the photon–two-gluon
fusion. The hadronic tensor is expressed in terms of the
two-gluon couplings with the proton that are related to
SPD. As a result, the cross sections of diffractive meson
and QQ̄ production are expressed in terms of the same
integrals as are connected with the gluon SPD, Fζ(x) and
Kζ(x).

The AlT asymmetry is found to be proportional to
the ratio of the K/F structure functions and generally
can be used to get information on the transverse distri-
bution Kg

xP
(xP , t) from experiment. The asymmetry of

vector meson production is expected to be quite small,
AlT < 0.1% in the HERMES energy range. This result
was obtained for a simple non-relativistic form of the vec-
tor meson wave function and generally can be used only
for heavy meson production. The AlT asymmetry for QQ̄
production contains two independent terms which are pro-
portional to the scalar products �k⊥�S⊥ and �Q�S⊥ (50). The
first one, ∝ �k⊥�S⊥, has no xP suppression and is pre-
dicted to be about 10%. It might be an excellent object to
study transverse effects in the proton coupling with glu-
ons. However, the experimental study of this asymmetry
is not so simple. To find non-zero asymmetry in this case,

it is necessary to distinguish quark and antiquark jets and
to have a possibility to study the azimuthal asymmetry
structure. This is an important condition, because the po-
larized cross section integrated over dφJet is equal to zero.
Note that the asymmetry of the same order of magnitude
was predicted for diffractive QQ̄ production in polarized
proton–proton interaction [41].

The second term ∝ �Q�S⊥ in the AlT asymmetry of QQ̄
production is related to the diffractive contribution to the
A⊥ asymmetry. The expected asymmetry in this case is
not small too. The predicted coefficient CQQ̄

Q in (58) is
about 0.3. This shows the possibility to study the ratio
of polarized gluon distributions K/F in diffractive QQ̄
leptoproduction. All these results should be applicable to
the reactions with heavy quarks. For processes with light
quarks, our predictions can be used in the small x region
(e.g. x ≤ 0.1), where the contribution of quark SPD is
expected to be small.

Now, we have no the definite predictions for the AlT
asymmetry in light vector meson production. Including
the transverse quark motion and higher twist effects for
a transversely polarized ρ meson might be important for
the asymmetry. In the region of a non-small x ≥ 0.1 in the
HERMES experiments, the polarized quark SPD might be
studied together with the gluon distribution in the case of
ρ production. In the case of φ production, the strange
quark SPD might be analyzed. Similar experiments can
be conducted at the future COMPASS spectrometer if a
transversely polarized target is constructed there.

We conclude that important information on the spin-
dependent SPD at small x can be obtained from the asym-
metries in diffractive hadron leptoproduction for longitu-
dinally polarized lepton and transversely polarized hadron
targets.
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